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COMPUTATIONAL METHODS FOR REVERSED-FIELD EQUILIBRIUM*

J. K. Boyd, S. P. Auerbach, P. A. Willmann, H. L. Berk, and B. McNamara

Lawrence Livermore Laboratory, University of California,
Livermore, CA 94550

ABSTRACT

Investigating the temporal evolution of reversed-field equilibrium

caused by transport processes requires the solution of the Grad-Shafranov

equation and computation of field-line-averaged quantities. The technique for

field-line averaging and the computation of the Grad-Shafranov equation are

presented. Application of Green’s function to specify the Grad-Shafranov

equation boundary condition is discussed. Hill’s vortex fornulas used to

verify certain computations are detailed. Use

implement computational methods is described.

of computer software to

INTRODUCTION

The problem of reversed-field transport and equilibrium involves

commutating field-line-averaged quantities and solving the Grad-Shafranov

equation. The methods used are described in the first part of this report and

the software implementation in the second part.

*work perfo~d under the auspices of the U. S. Department of Energy by the
Lawrence Livermore Laboratory under contract number w-7405-EN@48.
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The first part describes the technique for field-line averaging, the

tri-diagonal solution of the averaged Grad-Shafranov equation, the Incomplete

Cholesky Conjugate Gradient (ICCG) solution of the two-dimensional

Grad-Shafranov equation, and the application of Green’s function to obtain

boundary conditions. The computations of field-line-averaged functions are

verified by using the Hill’s vortex, analytic, reversed-field equilibrium.

Because the use of Hill’s vortex is widespread, the analytic formulas for

pertinent transport and equilibrium functions are presented. Graphs of these

functions versus flux are also included. These may be compared with other

equilibria or with a Hill’s vortex after it has evolved by transport. The

second part of this work details the use of subroutines to implement our

computational uethods. The ICCG method is generally applicable to problems

requiring the inversion of a matrix having five or more bands. An efficient

assembly-language version of the five-band algorithm is available for users of

the Magnetic Fusion Energy Computer Center’s Cray 1 computer. All other

subroutines are in FORTRAN. Several techniques used to reduce run time to

one-fourth that for standard FORTRAN are discussed for the ICCG method.

I. MBTHODS AND HILL’S VORTEX SOLUTION

The central equation”to be solved is Ampere’s law combined with force

balance k cylindrical coordinates. The general relation is the

Grad-Shafranov equation,

A~ = -4nr2p’-ff’ . (1)

The toroidal, magnetic induction is f/r, and p is the pressure. Both p and f

are functions of $ where ~ = V+ x V@ + flo. The poloidal induction, B is
P’

V+x Ve. The average of (1) divided by r2 is,

(2)

where

()1-lVv 2
K.

2“
r
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an average over a flux surface. For a general function X,

9? -Pld -P

An equilibrium is obtained when Eqs. (1) and (2) are self-consistentlysolved

subject to constraints on p($) and f(v) which enforce certain dynamical

conservation laws.1 It is then necessary to compute average quantities<X>,

and numerically solve (1) and (Z).

A. FIELD-LINE AVERAGE

Let [X] ‘~X d~/Bp; then <)(>is obtained as<)(>= [x]/[11. It is

only necessary to compute the un-normalized average. The function X, B
P’

and flux, $, are specified on a rectangular grid which -Y be variable- The

actual [x] average is calculated along a constant ~ path” On the grid this is

approximated by examining a grid cell and taking the integration path as a

straight line between the $ intersections of the grid-cell sides. The $

intersection and the value of X at the intersection are obtained by linear

interpolation. The value ofX/Bp along the straight-line-integrationpath

is taken to be the average of the values at the two intersections. The

contribution of a grid cell to [X] is the distance between $ intersections

multiplied by the sum of X/B at these two intersections. The factor of 1/2
P

is absent because $ contours are assumed to be syunnetric about z = O. The

routine assumes it is only examining grid cells for z greater than zero. The

value of [X] is finally obtained by summing the contributions from all grid

cells.

The procedure just described is a good approximation to [Xl except near

the vortex point, where a V contour may intersect one side of a grid cell

twice. To resolve this difficulty <x> is defined to be a weighted sum of the

numerical average and the analytic average obtained by using the Hill’s vortex

formulas described in a later section:
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a

v

7

9

(x> = ea
‘X>analytic

+ (1 - ea) <X>nu=rical ,

where ~v is the flux value at the vortex point. At and near the vortex

point <X> is almost entirely the analytical average. For ~ - $V greater

than -0:2 ~v, <X>iS almost entirely thenwerical average.

B. TRIDIAGONAL SOLUTION OF THE AVERAGED GRAD-SHAFRANOV EQUATION

Equation (2) is the average Grad-Shafranov equation, with p and f

arbitrary functions of $. It is iterated self-consistently with Eq. (1) to

allow the imposition of a transport-determined flux value at the vortex

point. To invoke adiabatic-equilibrium changes between transport steps, the

following two relations are used:

p(y) (4!= s($) ~

The left hand side of

non-uniform mesh

(3)

(4)

Eq. (2) is difference in a conservative manner with a

% (K%)=(?)+‘:3)‘:)Vi+l + [TJ3)(hi-‘f)-‘!.2)- ‘!’)]Vi

(+ T(2) -h: Tj3) $i-l .
)

(5)
i

The spacing between.$i-l and vi is hl, and the spacing between *i and

$. is h2. The T:’) functions are given below:1+1

“’)”%5%s ,
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~(,, _ ‘:h +:,+, s

i
(

2
‘1 ‘1 ‘2 + ‘2 ‘1

p =2 (’:-‘0%)2.
i

(

2 2
% ‘2 + ‘2 ‘1

The right hand side of Eq. (2) is written below:

()
as QY-l -

y-2 &

R= -41’r~dv 4TYs(~) dv2

‘i=p(%’-2+?$%-?\

o1

d
;2 1 ; (8)

dV “h:h2 + ‘I h:

then,

R, =
(
-’l Ui - ‘~ ~i)$i+l + ( )- h2 u, + ‘~ ‘i ‘i-l

+ [(’1+ ‘2) O, + (’; - h;) ‘,] *, .
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Using Eqs. (7), (8), and (9) in (5) yields,

where

(1)
Ai = Ti

+T(3) 2 2
i ‘l+-hloi+hl vi’

(lo)

= T(3)
Bi i

(h: - ‘:) - ‘:2) - ‘:1)
-(hl+h2) Oi+(h~+h~) Vi,

(2)
Ci = Ti

2 (3)
- ‘2 ‘i + ‘2 ‘i

-h:Vi .

Equation (10) is homogeneous, because nonlinear terms such as (d$/dV)Y-l are

treated as a product of two terms at different iteration levels,

(#-1=[(%-)’-2]%w+l.
Given $ boundary values

in the usual fashion:

at the vortex point and separatrix, Eq. (10) is solved

‘i+l =Ei I#i+Fi 1

E.=-
)cii~i ‘i + ‘i Sl-l

F.
(

=-AiFi/AiEi+Bi .
1-1 )

The function K has a logarithmic singularity at the separatrix. To avoid an

infinity in the ‘r(l) function one point from the separatrix, Ki+l + Ki
i

is replaced by Ki+1,2, obtained from a fit of interior K values assuming the

following functional form,
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a

K = alV + a2V + a3V + a4V2
(

)En~l -V)

t

+ z. sin jnV
( )
Cjv + djV2 ,

j=l

.

where V is normalized to the separatrix volume, and typically ~ = 4. The

analytic derivative of this formula is used for dK/dV to obtain a smooth

function that properly represents the l/(1-V) singularity.

c. ICCG SOLUTION OF THE GRAD-SHAFRANOV EQUATION

The Grad-Shafranov equation in cylindrical coordinates is given bel~w in

Gaussian units,

(11)

where

J = c r p’ +—b:rff’ .

The @ derivatives of pressure and toroidal flux are obtained by using Eqs. (3)

and (4):

()

,=~ @-l
P dV dV

+,, ($y-2 $ ,

dV

( L_)1

f, = 4~2 -2dy& 1 ddvr .

0 *+qd$dv21 dV

0)

1
~ ~

As suggested by Grad, d2~/dV2 is expres8ed in terms of first derivative

quantities by using the average equation and (6):
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1
5’

Applying central differences to Eq.
(11) on a variable mesh yields

aij$i+~, j ‘V.ij+ ‘ijvi-l, j “ijVij+l+ ‘ij$ij-l

4*6 r J=-—
c ij ij ij ‘

where the coefficients for an r,z mesh are given below:

6
[[

=-
1

2 Ari - Ari+l /Ri
ij

+ [(bri~- (Ari+1)2]/si

I 11-1_ 2 Az. - Azj+l /Tj
J

a. . =6..
[
2Ari/Ri -

lJ lJ (Ari)2isil
A“

B
[

= 6.. 2Ari+1/Ri+ (Ari)2/Si
ij lJ 1

Y =6 ij 2AZ.IT.
ij JJ

(12)
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A = 6ij 2Azj+1fTj ‘
ij

Eti= (Ari+l)’
‘ri + (Ari-1)2 ‘ri+l

s, = r, Ri

Tj = (Az,+,)
2 ‘Zj + (Azj-l~ ‘Zj+l

Az. = Zj - Zj-l
J

The solution of the difference Eq. (12) is equivalent to

matrix having five bands. The solution is obtained using

the inversion

a modification

of the Incomplete Cholesky Conjugate Gradient Method (ICCG) devised by D. s.

Kershaw.
2

The problem reduces to finding ~ given $ and ~ in Eq. (13),

After a lower, upper, triangular decomposition of matrix ~, Eq. (13) becomes

(14)

The g, ~, and ~ matrices ‘n ‘q- ’14) are given belOw:

=A.. - ~ ‘jk ‘ki ‘kk ‘
(15) .L

ji J1 k=l

u =A
ij ij - ~ ‘ik “kj ‘kk ‘

k=l

(16)

D = (Uii)-l .
ii

(17)
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The grid is M by N, and the matrices are M

difference scheme results in ~ having five

*

xNby ’Mx N. The five pOint

bands. The bands are then:

L. = A.
l,i-1 l,i-1 ‘

L. = A.
1,i-M l,i-M ‘

L =A. .-L.. u. D. - L. u. D.
ii 11 11-1 1-1$i-l l-1,i-1 1,i-M 1-M,i l-M,i-M ‘

u = Lii ,
ii

u. =A. .
l,i+l 11+1 ‘

u. = A.
1,i+M l,i+M “

(18)

(19)

(20)

(21)

(22)

(23)

It is only necessary to compute Lii. Eqs. (18) to (23) are used m the

.

algorithm below:

‘T (L D U)-l so ,l?O=~TwJ) ===

L._ -1(L D U)-l Si, (~~~)-1 S’
i =.=

a = —.. 3

(p’-,P1)

(24)

(25)

(26)

(27)

(28)
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1(L D U)‘1 si+l, (LDU)-l si+l
bi =

.== 1=-’—=—..:
[ T

(29)
(L D U)-l S’Z-D ui=i-si

9

.==..=

i+l -1 i+l “ “
E =AT(LDU)-T(LDU) ~ + bl~l ..===. ==

(30)

Operations such as z = (L D U)-l Si are performed by using tridiagonal.==

back substitution in three steps as follows:

LX=S1 ,

Dy=x ,

Uz=y ●

The algorithm is iterated from Eq. (26) to Eq. (30) until the residual Si is

sufficiently small.

The five band ICCG method, Eqs. (18) to (30), is a mathematical

operation and is therefore applicable to other physical situations in addition

to the equilibrium problem. It may also be generalized to cases involving

nine or more bands in the A matrix.
.

D. BOUNDARYCONDITION

The specification of the solution of Eq. (1) requires a boundary

condition. A Green’s function technique is used to obtain the boundary

condition by summing the flux due to current rings. Each grid point where the

current is non-zero is considered to be a current ring. The flux due to a

current ring3 is given by Eq. (31):

.
where

t(r,z) =
~1

dr’ dz’ G(r’, z’, r,z) J , (31)
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G(r’, z’, r, z) ‘$
\~~[(l-~k2)K(k)-E(k)]l

a
I k2=—

4 r’r

! (r’ + r)2 + (z- Z’)2 ‘
I*

and K(k) and E(k) are elliptic integrals of the first and second kind,
~

respectively. The analytic fornula in Eq. (31) is approximated below:!
i

*(r,z) =; Z [Jij ‘(ris ‘j> ‘s2)+ ‘i-~,j ‘(ri-~s ‘j, ‘s2)
ij

+ J.
(

G ri, z
)
+ J.

(
G ri-l, z.

j-1’ “z )1
AriAz. .

l,j-1 l-1,j-1 J-l’ “z J

The Green’s function, G(ri, z.,
J

r,z), must be computed for each grid

point, for all r,z where a boundary condition is required. Because it is

necessary to read G from a disk, the change of the z = O boundary point is

monitored during solution iteration, and all boundary values are recomputed

only if there is a significant change at z = O. Because of symmetry the actual

Green’s function used for computation is G(r’, z’, r,z) + G(r’, - z’, r,z).

E. HILL’S VORTEX FORMULAS

.
The Hill’s vortex mode14 has been used to verify the ICCG solution of

Eq. (1) and the computation of field-line averages. Relevant transport and

equilibrium functions are given below in terms of the Hill model to allow

comparison with other equilibria or with a Hill’s vortex after it has evolved by

transport.

The flux is expressed as a polynomial in r and z:

(32)

The vortex point radius rv, flux at the vortex point tv~ and total VOIUme

within the separatrix, V
s
, may be calculated by using Eq. (32).
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!
The VOIUm as a function of flux v(v), the average quantities, and their

derivatives are obtained as trigonometric integrals which are evaluated

numerically by using Simpson’s rule. For the average functions the following

relation is used:

d.1 dr—=
B

●

P X (~ +6 r2-$r4)1’2

1
The analytic Hill formlas are given below with small b expansions (beneath

1
each fornula) where b = (1 - */$v)l’2. The separatrix corresponds to

!
b = 1 and the vortex point corresponds to b = O.

3Vs b m

v($) = J’ dO cos e (1 - b cos 0)
1/2-—

2/2 o

1 V(b
‘(

-O)=%Vs b2+$2b4
8fl )

1

~=

J

3a Vs T de-——
@ 16 @

Vo (l-b C0t3e)1’2

(33)

(34)

(35)

a

.

$!(b *o). az-~(l+$)

d2V
3VS ~ ‘1’f

J
d

Cos g—=— .

d$2 32/2 +: b () (1 - b Cos e)3’2

(36)

(37)



,

()&=-$$3$$
dV2 dV

.VS3 d~ n
1/2

<r2>
Bndv J

dO (1 + b COS 6)

o

b’

()
<r2> (b=o)=$$}~ 1-=

do COS 6

(1 - b COS 8)5/2

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

2Vs3

f

IT

2
de COS 6 (48)

sg$<r$-(%)rx+ o~<r>
v

(1 + b c~s (#’
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Let

~(l+bcos e),2$6
c ‘3(3( l+ bcose)+2

f

11 1
.

(1 + b cos 0) (C2 - 2y *V b2 sin
26)2

o

[

( -fi$V b2 sin
)

2g
Cos e

.— C2

2(1 + b COS e)l’2 f

[(

B 2@/313
2~ --

-)

COS e

2 (1 + b COS e)2

1/2
+(l+bcosfI)

26/313 2b $
‘l+bcosg v

- 4by *V sin2 0

\

de ,

(50)

(51)

(52)

q_ o1

dV ~ d’~+)+f(%)-1’2~ (-+0*4b) “3)(b= O)=~dv2

2

()
<B2>=$K,
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d ,2
()
* 2 dK Q!& .~\ B>=dV ~+2K

‘v dV2
(55)

The magnitude of the magnetic field IBI around a flux surface is computed by

obtaining the distance along a flux surface k, and using the definition of

IBI below.

(56)

The trigonometric integral for Jdg has an integrable singularity at 0 = n

which causes numerical difficulty. To resolve this problem Jdfl is computed in

two parts. The first part of the integral is in z,

o 0

(Y2~+(3r2-~r )
64

1+

(

B+~r2 2

2 )

1/2

dz , (57)

with

used in Eqs. (56) and (57). The second part of Jdfi is an angular integral,

J’
‘2 ‘2

&/i f

de

(

2 2

)

1/2
dR=- sin2 (1

(1 + b Cos #2 ~ - 2Y$V b

, (58)

L ‘1

with

r2=#(bcost3+l)

used in Eq. (56).

Functions given by Eqs. (33) to (58) are plotted in Figs. 1 to 10 for.
three aspect ratios with $V = -1 and rv = l/fi. The flux ranges from

-1 to O from the vortex point to the separatrix, and $ is zero at r = 1 and
●

z = o. For all cases 6 = 8, and 6 = 48 in Eq. (32). Plots with three curves

labelled A, B, C refer to y = 4, 8, and 16, respectively. These values of Y

correspond to a ratio of radial to axial separatrix distance squared, E, equal
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of 0.5, 1 and 2. To avoid singularities the range of $ is restricted to -0.95

to -0.05.

Figures la, b, and c are contour plots showing the different geometries

for the three E values. Case A, Fig. la, is prolate; case B, Fig. lb, is

spherical; and case C, Fig. lc, is oblate.

The volume, V(v), is plotted in Fig. 2a. The prolate geometry, case A,

has the greatest volume at any value of flux. The oblate case, C, has the

least volume and the spherical case, B, is intermediate between’ these two

extremes. The volume derivative of ~, d@/dV is plotted in Fig. 2b. The

greatest to least d~/dV occur for the oblate, spherical and prolate cases,

respectively. Each curve would plunge to zero at ~ = O, the separatrix, if

the plotting range were extended. This sudden change in value is a

consequence of the logarithmic singularity of K mentioned earlier and the fact

K dv/dV is proportional to the total enclosed current. Because the total

current is finite and K is singular, d~/dV must go to zero. Figure 2c,

d2@/dV2, dramatically illustrates the sudden rate of change of the slope .

of d~/dV near $ = O. The relative magnitude of d2~/dV2 for the three

cases is prolate, spherical and oblate. This is the opposite of the ordering

for d@/dV.

Figure 3a is a plot of <1/r2> (~). This function goes to infinity at

$= O; and consequently d/dV<l/r2> in Fig. 3b and d/d$<l/r2>inFig. 3C

rise sharply near @ = O. Figures 3a and 3C show<l/r2> and d/d4<l/r2>

are both independent of E for Hill’s vortex.

Figures 4a, b, and c are plots of K(v), dK/dV, and dK/@, respectively.

The greatest to least value at a given flux occurs for prolate, spherical and

oblate geometry for each plot. The weak singularity at V = O is illustrated

by the rapid increase of dK/dV or dK/d4 near 4 = o. Because the Poloidal

field is zero at the vortex point, K = O at $ = -1, as shown in Fig. La.

Figures 5a, b, and c are plots of<r2>, d/dV ~~2> and d/d$<r2>*

Figures 5a and SC show that <r2> and d/d$ <r2>do not depend on E. This

is consistent with Eqs. (46) and (48). The greatest to least magnitude of

d/dV <r2> at fixed $ occurs for prolate, spherical and oblate geometry,

respectively.

Figure 6a is a plot of <1/B2> as a function of flux.- Because IBI is

zero at the vortex point <1/B2> goes to infinity at V = -1 as indicated.

As the proximity of d/dV <1/B2> to zero in Fig. 6b shows, <1/B2> is

relatively constant for -0.8 z Y f O. The greatest to least magnitude of
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.

.

<1/B2) at constant $ occurs for prolate, spherical and oblate geometry,

respectively. Figure 6b shows d/dV <1/B2> has a very weak dependency on E.

Figure 6C shows a crossover point for d/d~<l/B2>. For $ less than -0.2 the

greatest to least value occurs for oblate, spherical and prolate geometry.

For $ greater than -0.2 the order becomes prolate, spherical and oblate.

Figure 7a shows <B2> with the greatest to least value occurring for

oblate, spherical and prolate geometry, respectively. Because IBl is zero

the vortex point.<B2> is also zero at $ = -1 as indicated by Fig. 7a. The

existence of a maximum value of <B*> for each E value leads to a crossover

at

point for didV <B2>and d/d$<B2>as shown in Figs. 7b and 7c. For IJ < -0.11

the greatest to least value of the derivative occurs for oblate, spherical,

and prolate geometry, respectively. For ~ Y -0.11 the order becomes prolate,

spherical, and oblate.

Figures 8, 9, and 10 are plots of IBl as a function of distance around a

flux surface beginning at z = O below the vortex point. The main features of

IBI for Hill’s vortex are the positions where IBl = O at the vortex point and

separatrix, and the IBl maximums above and below the vortex point. On a

particular flux surface IBI has the saw value at the two radial positions at

z = o. The basic feature of IBI shown in Figs. 8, 9, and 10 is the existence

of two minimums and two maxiaums around a flux surface. For the prolate

geometry Fig. 8, the spherical geometry Fig. 9, and the oblate geometry Fig.
-4

10, IBI is plotted for ! = -0.8, -0.6, -0.4, and -10 . The important

difference between these plots is the ratio of maximum to minimum IBI, R,

summarized for various ratios of radial to axial separatrix distance squared,

E, and flux below.

E

* 0.5 1.0 ‘ 2.0

-. 8 2.84 2.06 1.48

-. 6 2.97 2.29 1.58

-.4 3.26 2.38 1.74

-.OOO1 30.7 20.0 19.8
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At constant E, R increases as ~ increases, moving from the vortex point

toward the separatrix. The minimum IBl exactly on the separatrix is zero, so R

. goes to infinity at 4 = O. This accounts

For a fixed value of flux, R decreases as

has the smallest’values of R.
d

II. COMPUTATIONAL

A. FIELD-LINE AVERAGE

The [x1 operation discussed in Sec.

for the large

E increases.

R values for ~ = -0.0001.

The oblate geometry

IMPLEMENTATION

IA is performed by subroutine

FLINAV . The calling sequence is given below:

CALL FLINAV (S1, F, IR, 12, IRD, IRZ, R, Z, HTS, N, XINT).

The subroutine computes N averages of function F and returns values in

array, XINT. Function F is considered to be the entire integrand, i.e.,

X/Bp for the average of Sec. 1A. Computation proceeds on a rectangular grid

bounded by Z(l), to 2(12) and R(1) to R(IR). Averaging is assumed to be done

on flux heights symmetric about z = O. An explanation of the calling

arguments follows:

1. SI(IRD, IZD) Array of flux values. Averages are performed

along constant S1 heights. (INPUT)

2. F(IRD, IZD) Array of function values to be averaged.

(INPUT)

3. IR The maximum radial index over which averaging
occurs. This must be less than or equal to
IRD. (INPUT)

4. 12 The maximm axial index over which averaging

* occurs. This must be less than or equal to
IZD. (INPUT)

5. IRD First dimension of arrays F and S1. (INPUT)*

6. IZD Second dimension of arrays F and S1. (INpUT)

,



7. R(IR)

8. Z(IZ)

9. HTS(N)
*

10. N

d

11. XINT (N)

B. FIVE BAND ICCG

The solution of Eq.
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Array of radial grid positions. (INPUT)

Array of axial grid positions. (INPUT)

The heights along which averages are computed.
(INPUT)

The number of averages to be computed. (INpUT)

Array of average values. (OUTPUT)

(12) is obtained by using six subroutines SETICC,

CORICC, BACKL, BACKU, DINV, and MATMUL. The user need only call subroutines

SETICC and CORICC. Subroutine SETICC is called once to compute band 3 given

inEq. (20) and to compute the initial vectors~ and~ given byEqs. (24) and

(25). Subroutine CORICC performs one loop through the ICCG algorithm given by

Eqs. (26) to (3o). Assume the equation to be solved is

Ax=y ,
=-

(59)

where the five bands of matrix ~ are as shown in Fig. 11. The z,r grid is

dimensioned IZDIM by IRDIM as shown in Fig. 12. The main diagonal of matrix A.

has a length equal to the number of grid points, IZDIM times IllDIM.

Vector x elements then refer to grid points [z(l), R(1) , . . . z(1),

R(IRDIM)],. . . [z(2), R(l)], . . . [z(2), R(IRDIM)]. In other words, ~

consists of consecutive columns of the grid. Before discussing the calling

arguments of SETICC and CORICC it is necessary to describe the construction of

the five bands, and the y vector of Eq. (59). The description is given in

terms of a.. 6.. Y.. a.., and~..
lJ’ lJ’ lJ’ lJ lJ of Eq. (12) and grid boundary

values denoted @b. Assume arrays Al, AZ, A3, A4, A5, X, and Y are

dimensioned IRDIM by IZDIM.

.

●

I
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Band 1

Interior grid points,

Al (i, j) = Aij+l i = 2, IRDIM-1

j = 1, IZDIM-1

Axis grid points,

Al (1, j) = O “ = 1, IZDIMJ

Boundary at maximum radial position,

Al (IRDIM, j) = O j = 1, IZDIM

Boundary at maximum axial position,

Al (i, IZDIM-1) = O i = 2, IRDIM-1

Band 2

Interior grid points,

AZ (i, j) = ~i+l j i = 1, IRDIM-1
J

j = 1, IZDIM-1

Axis grid points,

AZ (IRDIM, j) = O j = 1, IZDIM-1

Boundary at maximum radial position,

A2 (IRDIM-1, j) = O j = 1, IZDIM

Boundary at maximum axial position,

AZ (i - 1, IZDIM) = O i = 2, IRDIM-1

Premultiply band times axis boundary condition, where

~b (1, j) ‘0,

AZ (1, j) = O j = 1, IZDIM-1
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Band 3

A3 (i, j) = 1
●

* Band 4

Interior grid points,

A4 (i, j) = aij

Axis grid points,

A4 (1, j) = O

Boundary at maximum radial position,

A4 (IRDIM, j) = O

i = 1, IRDIM

j = 1, IZDIM

i = 2, IRDIM

j = 1, IZDIM

j = 1, IZDIM

j = 1, IZDIM

Boundary at maximum axial position,

A4 (i, IZDIM) = O i = 2, IRDIM - 1

The band times the boundary condition is premultiplied and put on the

right hand side so,

A4 (IRDIM-1, j) = 0. “ = 1, IZDIM - 1J

Band 5

Interior grid points,

A5 (i, j) = yij i = 2, IRDIM

j = 1, IZDIM

Axis grid points,

A5 (1, j) = O j= 1, IZDIM

Boundary at maximum radial position,

A5 (IR.DIM,j) = O j = 1, IZDIM
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The band times the boundary condition is premultiplied and put on the

right hand side so
.

A5 (i + 1, IZDIM-l) = O. i = 1, IRDIM- 2

Right hand side,

Y (i, j) = 6ijriJij i = 2, IRDIM- 1

j = 1, IZDIM

Axis grid points,

Y (1, j) = $b (1, j) j = 1, IZDIM

Boundary at maximum radial position,

Y (IRDIM, j) = $b (IRDIM, j) j = 1, IZDIM

Boundary at maximum axial position,

Y (i, IZDIM)= ~b (i, IZDIM) i = 2, IZDIM- 1

Note the following step of putting band times boundary condition on the right

hand side aust be performed prior to zeroing bands 2, 4, and 5.

z (IRDIM-1, j) = Y (IRDIM - 1, j)

y (IRDIM-1,j) = - A4 (IRDIM-1,j)

+ z(IRDIM-1,j) j = 1, IZDIM- 1

z (i + 1, IZDIM-1) = Y (i + 1, IZDIM-l)

i = 1, IRDIM- 2

I

*

:9

Y (i + 1, IZDIM-1)= z (i + 1, IZDIM-l)

- A5 (i + 1, IZDIM-1) y (i + 1 + IRDIM,

12DIM-1) i = 1, IRDIM-2
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The calling sequence and arguments for subroutines SETICC and CORICC are now

given:

* CALL SETICC (Al, A2, A3, A4, A5, B, P, R, Tl, T2, U3, X, Y, MN, M).

* Subroutine arguments Al, A2, A3, A4, A5, P, R, Tl, T2, U3, X, and Y

one-dimensional arrays of length MN, where MN is the total number of grid

are

points, IZDIM times IRDIM. The band 3 to band 5 offset is M which would be

IRDIM for Fig. 12.

1. -

6.

7.

8.

9.

10,

110

12.

13.

14.

15.

5.

B

P

R

T1

T2

U3

x

Y

MN

M

The first five arguments are arrays containing
bands 1 to 5 having dimension equal to the
number of grid points of the computational area.

(INpUT)

The numerator of the right side of Eq. (26).

(OUTPUT)

The vector given by Eq. (25). (ouTpUT)

The vector given by Eq. (24). (OUTPUT)

Temporary storage.

Temporary storage.

Band 3 given by Eq. (21). (OUTPUT)

Initial solution guess. (INPUT)

The right hand side Eq. (59). (INPUT)

The number of grid points. (INPUT)

The number of radial grid points. (INPUT)

CALL CC)RICC (Al, A2, A3, A4, A5, B, P, R, Tl, T2, U3, X, Y, MN, M, EPS).

The arguments for CORICC are the same as for SETICC with the following

exceptions:

12. x The

16. EPS The

current solution.

sum of the squares of residuals.
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The solution vector ~ typically is obtained by calling SETICC once and

then repeatedly calling CORICC until EPS is sufficiently small.

The five band ICCG algorithm consumes a.large fraction of the

computational expense of solving the equilibrium problem. To implement ICCG

efficiently on the Cray 1 computer, we have written subroutines SETICC,

CORICC, BACXL, BACKU, DINV, and MATMUL in assembly language. The FORTRAN

versions of these subroutines accept any values for MN and M, provided M

exactly divides MN, mod (MN, M) = O. The assembly language version has the

same arguments for the user-called subroutines SETICC and CORICC, but it has

two additional restrictions. The band-offset M must be greater than or equal

to 8 and less than or equal to 64, 8 must exactly divide M, mod (M, 8) = O and

mod (MN, 64) = O. Assembly language versions of these subroutines may be

written without these restrictions; however, it is not then possible to derive

the maxinmm perfor~nce from the Cray 1 hardware. The restrictions arise from

the optimization of two types of do loops. The method chosen to optimize

these do loops depends on the presence of 64 words in each Cray 1 vector

register.

The first type of do loop to be optimized is recursive and thus prevents

complete vectorization by the CFT compiler.

D0201=MN-M, l,-1

20 X(I)= [Y(I)- A4(I)* X(I + 1) - A5(I)* X(I +M)]/A3(I)

Because array A3 is fixed the first optimization is achieved by

replacing the divide by a multiply with T4(I) = 1.O/A3(I). To allow further

partial vectorization two temporary arrays are introduced with two inner do

loops. The innermost loop is vectorizable and the do loop overhead is further

reduced by introducing eight statements for X(J).

T5(M), T6(M)

MN -M,l,-M

I, I -M+l,-l

DIMENSION

D0201=

D015J=

T5(I + 1 - J) = T4(J)* [Y(J)- A5(J)*X(J + M)]
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15 T6(I + 1 - J) = T4(J)* A4(J)

D020J=I, I- M+l, -8

X(J) = T5(I+1- J)- T6 (1+1-J) *X(J+l)

X(J-1) =T5(I +1-J-1) -T6(I+1-J-l) *X(J)

X(J - 2)= T5(I+1-J-2)-T6(I +1- J-2) *X(J -1)

x(J-3) =T5(I +1-J-3) -T6(I+1- J-3) *X(J -2)

x(J-4) =T5(I +1-J-4)- T6(I+l-J-4)*x(J -3)

x(J-5) =T5(I +1-J-5)- T6(I+1-J-5)*X(J -4)

x(J-6) =T5(I +1-J-6)- T6(I+l-J-6)*x(J -5)

20 x(J-7) =T5(I +1-J-7) -T6(I+1-J-7)*x(J - 6)

Machine language programming permits careful reordering of the

instruction sequence, optimal use of parallel processing, and the subsequent

elimination of temporaries T5 and T6. An overall run time reduction from 4459

to 997 microseconds is achieved with MN = 4096, M = 64.

The second type of do loop to be optimized is not vectorizable by CFT as

written below.

so=

D0201=1, N

20 s = s + X(I) *X(I)

To permit vectorization this do loop is split into three loops as

follows.

DIMENSION TEMP(64)

S=o
D051= 1,64

5 TEMP(I) = X(I) * X(I)

DO 15 I = 65, N, 64

D015J=1,64

15 TEMP(J) =TEMP(J)+X(I+ J-1)* X(I+J-l)

D030J= 1,64

30 s= S + TEMP(J)
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Only the lastdo loopdoes not vectorize. When the aboveFORTRANis

coded in assembly language, TEMP(I) is eliminated and an overall run time

reduction from 1859 to 90 microseconds is achieved with N = 4096.
●

c. BOUNDARY VALUE GREEN’S FUNCTION
*

The Green’s function is computed by subroutine GREENF. The Green’s

function over the entire grid for a given point is evaluated by a single call

to GREENF. Symmetry across z = O is assumed and the Green’s function is used

with the right hand side of Eq. (1) so the output of GREENF is [G(r’, z’, r,z)

+ G(r’, - z’, r,z)]/r’ with G(r’~ z’, r,z) given by Eq. (31). The IMSL

library or an equivalent must be invoked since this routine requires functions

MMDELK and MMDELE to compute elliptic integrals of the first and second kind.

The calling sequence and explanation of arguments follows.

CALL GREENF (RFAC, ZFAC, R, IRDIM, z, IZDIM, GREENS)

●

.

1. RFAC

2. ZFAC

3. R(IRDIM)

4. IRDIM

5. Z(IZDIM)

6. IZDIM

7. GREENS (IRDIM,
IZDIM)

Radial position r of Eq. (31). (INPUT)

Axial position 2 of Eq. (31). (INPUT)

Radial grid array. (INPUT)

Number of radial grid points. (INPUT)

Axial grid array. (INPUT)

Number of axial grid points. (INpuT)

Array of Green’s function values divided
by R for (RFAC, ZFAC) at grid positions
given by arrays R and Z. Due to symmetry
the Green’s function at t Z are combined.

Values of flux are computed by using trapezoidal integration

subroutine GREENG. The current is assumed to be symmetric about Z

by

= o, so

the Green’s function combined by GREENF is appropriate. The calling

sequence and arguments follow.
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CALL GREENG (S1, GREENS, RDB, XJTHET, IRDIM, IZDIM).

1. S1

2. GREENS (IRDIM,
IZDIM)

3* RDB (IRDIM,
IZDIM)

4. XJTHET
(IRDIM, IZDIM)

5. IRDIM

6. IZDIM

Value of flux ar r,z position used to compute
Green’s function array. (OUTpUT )

Array of Green’s function values combined for
t z and divided by r as computed by GREENF.
(INPUT)

-Array of grid cell areas in square centimeters.
RDB(i, j) = [R(i + 1) - R(i)]
. [z(j + 1) - z(j)]. (INpUT)

Array of 4m ric times the current in statamps.
(INPUT)

Number of radial grid points. (INPUT)

Number of axial grid points. (INpuT)

The Green’s function at z divided by r at a single point is computed by

subroutine GREENH. For a fixed point RFAC, ZFAC this is the routine

repetitively called by GREENF to get the Green’s funct’ion over the entire

grid. The calling sequence and arguments are below.

CALL GREENH (G, RFAC, ZFAC, R, Z).

1. G l/R [G(R,z, RFAC,
ZFAC) ]. (OUTPUT)

2. RFAC Radial position r

ZFAC) + G(R, - Z, RFAC,

of Eq. (31). (INPUT)

3. ZFAC Axial position z of Eq. (31). (INPUT)

4. R Radial current position. (INPUT)

5. z Axial current position. (INPUT)
F

A boundary point value is computed by first calling GREENF and then
●

calling GREENG with 47Tr/c times the current. For a typical 64 x 64 grid

there are 520,000 Green’s function values.
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D. HILL’S VORTEX

The Hill’s vortex formulas are computed by calling subroutine HILLSI.

Values are communicated through common block HILLV. The calling sequence and

definitions of common block elements are given below.

COMMON/HILLV/A( 45)

CALL HILLSI

A(1)

A(2)

A(3)

A(4)

A(5)

A(6)

A(7)

A(8)

A(9)

A( 10)

A(n)

A(12)

A( 13)

A(14)

A( 15)

A( 16)

A(17)

Flux value at which functions are desired.

(INPUT)

Volume Eq. (33). (OUTpUT)

d$/dV the inverse of Eq. (35). (ouTpUT)

d2~/dv2Eq. (39). (OUTPUT)

<1/r2> Eq. (Q). (OUTPUT):

d/dV<l/r2>Eq. (44). (OUTpUT)

K Eq. (40). (OUTpUT)

dK/dV Eq. (41). (OUTpUT)

<r2> Eq. (46). (OUTPUT)

d/dV<r2>Eq. (48). (OUTpUT)

<1/B2> Eq. (50). (OUTPUT)

d/dV <1/B2>Eq. (52). (OUTpUT)

<B2> Eq. (54). (OUTPUT)

d/dV<B2>Eq. (55). (OUTpUT)

2/3 @Eq. (32). This is the value of the
distant uniform vacuum field. ( INPUT)

(6@/15)1/2Eq. (32). Radial position at which

$ =Oatz=O. (lNpUT)

6Y/6 Eq. (32), the ratio of radial to axial
separatrix distance squared, E. (INPUT).



-30-

A(18) The numberof angulargrid pointsusedwith
Simpson’srule to computefunctions. (INPUT)

A(19) to A(45) Workingspace.

A LIB library

DINV, BACKL, BACKU,

III. AVAILABILITY

containing FORTRAN subroutines FLINAV, SETICC, CORICC,

MATMUL, GREENF, GREENG, GREENH, and HILLSI is obtained

with the following execute line on the MFE 7600: FILEM READ .3040

.PHYSICS EQTRAN. A LIB library containing a binary assembly language

replacement for SETICC, CORICC, DINV, BACKL, BACKU, and MATMUL is obtained

with the following execute line on the MFE Cray 1: RFILEM READ .3040

.PHYSICS BICCG. Library BICCG contains the binary file BICCG2 and the

assembly language listing LICCG20
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Fig. 3. Hill’s vortex surface

1
average of (a) l/r2, <1/r2 , (b) the
volume derivative of (1/r2 and (c)

the flux derivative of <1/r5>as a
function of normalized flux. Curves
A, B, and C correspond to prolate,
spherical and oblate geometry,
respectively.
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Fig . 11. Five band matrix structure.
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Fig. 12. The 2-D grid is dimensioned
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r direction. MatrixbandsAl to A5 are
indicatedon the finitedifferencestar.


